Ivan Zoran Petric
A Digital Internal Model Current Controller for Salient Machines
Petric, Ivan Zoran; Vukosavic, Slobodan N.; DEgano, Michele; Galassini, Alessandro
Authors
Slobodan N. Vukosavic
Professor MICHELE DEGANO Michele.Degano@nottingham.ac.uk
Professor of Advanced Electrical Machines
Alessandro Galassini
Abstract
The performance of anisotropic electrical machines is strongly dependent on the current loop characteristics. The problems for achieving robustness and fast response, without overshoot and oscillations, are mainly related to different values and behaviour of the direct and quadrature inductances (Ld, Lq), as well as to high output frequencies. In this paper, a novel current controller structure based on Internal Model Control (IMC) method is presented, taking into account the magnetic anisotropy (Ld != Lq). The model of salient machines is derived directly in the discrete domain and used to obtain a model-based controller. The controller derivation does not rely on transport-delay approximations, which enables improved decoupling of axes dynamics and the closed-loop robustness for very high output frequencies. The presented controller enables enhanced response for higher current loop bandwidth and output frequencies than the state-of-the-art methods. The experimental verification is performed on a 3-phase synchronous machine, using a standard industrial 3-phase inverter.
Citation
Petric, I. Z., Vukosavic, S. N., DEgano, M., & Galassini, A. (2021). A Digital Internal Model Current Controller for Salient Machines. IEEE Transactions on Industrial Electronics, 68(6), 4703-4717. https://doi.org/10.1109/tie.2020.2988234
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 4, 2020 |
Online Publication Date | Apr 21, 2020 |
Publication Date | 2021-06 |
Deposit Date | Apr 29, 2020 |
Publicly Available Date | Apr 29, 2020 |
Journal | IEEE Transactions on Industrial Electronics |
Print ISSN | 0278-0046 |
Electronic ISSN | 1557-9948 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 68 |
Issue | 6 |
Pages | 4703-4717 |
DOI | https://doi.org/10.1109/tie.2020.2988234 |
Keywords | Control and Systems Engineering; Electrical and Electronic Engineering |
Public URL | https://nottingham-repository.worktribe.com/output/4360245 |
Publisher URL | https://ieeexplore-ieee-org.ezproxy.nottingham.ac.uk/document/9075373 |
Additional Information | © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
Files
A Digital Internal Model Current Controller For Salient Machines
(6.3 Mb)
PDF
You might also like
Thermal management of a permanent magnet motor for an directly coupled pump
(2016)
Presentation / Conference Contribution
Design and optimization of a high power density machine for flooded industrial pump
(2016)
Presentation / Conference Contribution
Trade-off analysis and design of a high power density PM machine for flooded industrial pump
(2016)
Presentation / Conference Contribution
History and recent advancements of electric propulsion and integrated electrical power systems for commercial & naval vessels
(2016)
Presentation / Conference Contribution
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search